Electrospray-differential mobility analysis of bionanoparticles.

نویسندگان

  • Suvajyoti Guha
  • Mingdong Li
  • Michael J Tarlov
  • Michael R Zachariah
چکیده

Electrospray-differential mobility analysis (ES-DMA) is a versatile technique used to aerosolize bionanoparticles and measure their electrical mobility at ambient conditions. ES-DMA is similar to electrospray-mass spectrometry (ES-MS), but measures the effective particle size, rather than mass. It has a wide range of applications and nominally can be used to characterize biomolecules and nanoparticles ranging in size from a few nanometers (~3 nm) to several hundred nanometers, to obtain multimodal size distributions in minutes. Although both the ES and the DMA are mature technologies, they are finding increased use in combination to characterize particles in liquids. In this paper, we review ES-DMA, and how it has recently been used to characterize bionanoparticles such as polymers, proteins, viruses, bacteriophages and nanoparticle-biomolecule conjugates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bionanoparticles as candidate reference materials for mobility analysis of nanoparticles.

We propose bionanoparticles as a candidate reference material for determining the mobility of nanoparticles over the range of 6 × 10(-8)-5 × 10(-6) m(2)V(-1)s(-1). Using an electrospray differential mobility analyzer (ES-DMA), we measured the empirical distribution of several bionanoparticles. All of them show monomodal distributions that are more than two times narrower than the currently used...

متن کامل

Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis.

We demonstrate the utility of electrospray gas-phase ion-mobility analysis as a new method to investigate nanoparticle flocculation, or aggregation. Au nanoparticle (Au-NP) solutions were sampled via electrospray (ES), followed by differential ion-mobility analysis (DMA) to determine the particle mobility distribution. Multimodal size distributions obtained with ES-DMA indicated the presence of...

متن کامل

Characterizing the adsorption of proteins on glass capillary surfaces using electrospray-differential mobility analysis.

We quantify the adsorption and desorption of a monoclonal immunoglobulin-G antibody, rituxamab (RmAb), on silica capillary surfaces using electrospray-differential mobility analysis (ES-DMA). We first develop a theory to calculate coverages and desorption rate constants from the ES-DMA data for proteins adsorbing on glass capillaries used to electrospray protein solutions. This model is then us...

متن کامل

Electrospray-differential mobility analysis as an orthogonal tool to size-exclusion chromatography for characterization of protein aggregates.

The biopharmaceutical industry characterizes and quantifies aggregation of protein therapeutics using multiple analytical techniques to cross-validate results. Here, we demonstrate the use of electrospray-differential mobility analysis (ES-DMA), a gas-phase and atmospheric pressure ion-mobility method for characterizing protein aggregates. Two immunoglobulin Gs are systematically heat treated t...

متن کامل

Differential mobility spectrometry with nanospray ion source as a compact detector for small organics and inorganics.

Electrospray ionization (ESI) is an important tool in chemical and biochemical survey and targeted analysis in many applications. For chemical detection and identification electrospray is usually used with mass spectrometry (MS). However, for screening and monitoring of chemicals of interest in light, low power field-deployable instrumentation, an alternative detection technology with chemical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in biotechnology

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2012